

Recent Advances in Surface-Energy-Regulated Marine Antifouling

Coatings for Concrete: Focusing on Superhydrophobic Surfaces

Zhijun Liu¹, Xu Meng¹, Shaochun Li^{1,*}, Xianpeng Wang², Kovshar S.N², Tsyganov A.R³

¹Qingdao University of Technology, 266520, Qingdao, China;

² Belarusian national technical university, 220013, Minsk, PR Belarus

³International Institute of Management and Business, 220086, Minsk, PR Belarus

KEYWORDS

Concrete;

Surface fouling;

Surface energy
regulation;

Superhydrophobic
coatings;

Anti-fouling;
Durability

ABSTRACT

Concrete structures exposed to marine, hydraulic, and urban environments are susceptible to multiple fouling processes, including sediment deposition, salt crystallization, organic contamination, and biological attachment, which accelerate surface degradation and reduce durability. Surface coatings are widely applied for concrete protection due to their practical applicability. Conventional barrier-type coatings protect concrete by blocking water and aggressive ion penetration, but their long-term performance is often limited by aging, interfacial degradation, and mechanical damage. Anti-organic-fouling coatings reduce oil and organic adhesion and show effectiveness in specific scenarios, although durability and environmental adaptability remain challenging. In recent years, surface-energy-engineered superhydrophobic coatings have attracted increasing attention. By combining micro-/nanostructured surfaces with low-surface-energy materials, these coatings impart high contact angles and low adhesion, effectively suppressing liquid wetting, particulate accumulation, and early-stage biofouling. This review systematically summarizes fouling mechanisms on concrete surfaces, compares different anti-fouling coating strategies, and discusses current challenges and future directions toward durable and practical concrete protection.

INTRODUCTION

Concrete is one of the most widely used structural materials in marine engineering, hydraulic infrastructure, and coastal constructions. During long-term service in harsh environments characterized by high humidity, high salinity, strong corrosion, and intense biological activity, concrete surfaces are highly susceptible to multi-source contamination and degradation. In marine environments, the coupled effects of chloride ingress, sediment deposition, organic pollutant adsorption, and biofouling by microorganisms and macro-organisms significantly accelerate surface deterioration, resulting in reduced service life, increased maintenance costs, and potential safety risks. Therefore, the development of efficient, durable, and environmentally friendly antifouling technologies for

concrete surfaces has become a critical scientific and engineering challenge in marine engineering[1-3].

Conventional antifouling strategies for concrete mainly rely on biocidal coatings or dense barrier coatings, which retard deterioration by releasing active agents or blocking the penetration of aggressive species. However, these approaches often suffer from environmental concerns, limited service life, and poor adaptability to concrete substrates, making them insufficient for long-term applications in marine environments[4]. In recent years, inspired by advances in biomimetic interface science and wetting theory, surface-energy-regulated antifouling strategies have attracted increasing attention. By reducing surface free energy and constructing micro/nanostructures,

* Corresponding author. E-mail address: lishaochun@qut.edu.cn

Received date: December 01, 2025; Revised manuscript received date: December 15, 2025; Accepted date: December 25, 2025; Online publication date: December 31, 2025.

Copyright © 2025 the author. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>).

the interfacial interactions between contaminants and substrates can be significantly weakened, thereby suppressing fouling at the source[5].

In this context, superhydrophobic coatings, characterized by high water contact angles, low sliding angles, and excellent liquid repellency and self-cleaning properties, have been regarded as promising candidates for non-adhesive antifouling protection of concrete surfaces. Numerous studies have demonstrated that superhydrophobic surfaces can effectively reduce the adhesion of sediments, organic pollutants, and early-stage biofilms, while simultaneously retarding chloride penetration and reducing water absorption thus offering synergistic improvements in antifouling performance and durability. Nevertheless, their practical application is still hindered by challenges such as insufficient mechanical robustness, limited long-term durability, and difficulties in large-scale fabrication on rough concrete substrates[6-7].

Against this background, this review systematically summarizes recent advances in antifouling coatings for concrete in marine environments, with a particular focus on surface-energy-regulated and superhydrophobic coatings. Their working mechanisms, advantages, limitations, and future research directions are discussed to provide guidance for the development of durable antifouling strategies for concrete structures.

1.Types and Formation Mechanisms of Surface Fouling on Concrete

Concrete surfaces are highly susceptible to multiple pollutants during service, and different fouling types often act synergistically to accelerate deterioration. Based on contaminant characteristics and mechanisms, surface fouling can be classified into four categories: inorganic salt fouling, organic fouling, sediment and particulate pollution, and biological fouling.

1.1.Inorganic Salt Fouling

Inorganic salt fouling arises from the migration, crystallization, and deposition of soluble salts (e.g., Cl^- , SO_4^{2-}) on concrete surfaces [8]. In humid or saline conditions, salts accumulate via capillary transport and precipitate during wet-dry cycles or evaporation [9], as shown in Table1. Although its effect on structural capacity is limited, salt crystallization markedly reduces durability. It

can increase surface roughness by about 60%, while crystal growth and pore blockage diminish freeze-thaw resistance, abrasion resistance, and resistance to moisture and ion transport [10]. Liang et al. [11] further reported that banded deposits formed under flowing water reduce surface compactness and enhance adhesion, promoting particulate accumulation, deeper carbonation, microcrack propagation, and up to a 40% drop in impermeability.

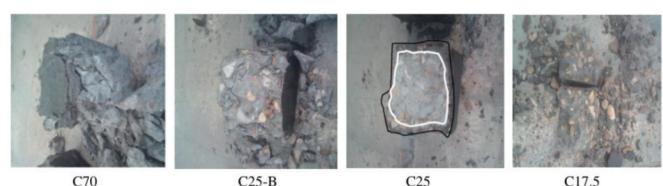

Specimen	MK-0	MK-5	MK-10	MK-15	MK-20
Efflorescence image					
Efflorescence area image					
Area(%)	60.16	50.91	42.24	34.12	30.27

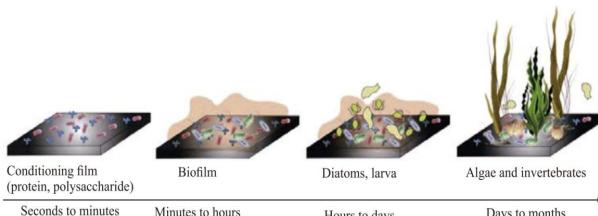
Table.1.Relative efflorescence area of concrete with different mix proportions

* Source: Study on the efflorescence behavior of concrete by adding metakaolin [10]

1.2.Organic Fouling

Organic fouling occurs because the porous concrete matrix readily adsorbs and retains oils and hydrocarbons, forming sticky contamination layers [12]. Their oxidation products and associated microbes reduce alkalinity and induce chalking, as shown in Fig1. Prolonged grease exposure may cause tackiness, discoloration, mold, and compressive strength losses exceeding 60% [13]. Low-viscosity fuels such as gasoline and diesel, though weakly corrosive, can dissolve loose surface phases and weaken steel-concrete bonding, causing an 18-22% strength reduction after 150 days [14]. In heavily oil-contaminated industrial environments, oxidized mineral oils combine with dust to form sludge, producing dark staining and reducing the elastic modulus (~18%) and friction coefficient (~37%) [15].

Fig.1.Penetration of petroleum through different types of concrete


* Source: Compressive strength performance of low-and high-strength concrete soaked in mineral oil [15]

1.3. Sediment and Particulate Fouling

Sediment and particulate fouling commonly occurs in environments with flowing water or airborne dust. Fine particles increase surface roughness, promoting the retention of dust, organics, and microbes and raising the risk of secondary contamination [16]. Particle impact under water or wind erosion further induces abrasion and microcrack propagation, reducing compactness as well as impermeability and abrasion resistance [17]. Fernandez [18] reported that airborne particulates not only alter surface appearance but also adsorb moisture and acidic species, accelerating weathering and alkalinity loss. Notably, the increasing proportion of carbonaceous and nitrogenous particles enhances SO_2 oxidation and gypsum formation, triggering “black crust” development and advancing calcite sulfate conversion, thereby compromising surface integrity [19].

1.4. Biological Fouling

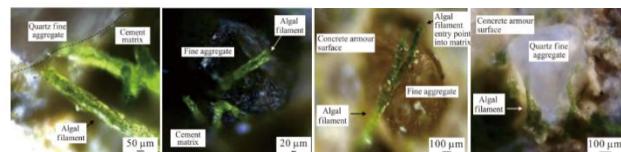
Biological fouling is a major deterioration process in moist, nutrient-rich, and mild-temperature environments [21], as shown in Fig2. It is driven by the adhesion, growth, and metabolism of bacteria, fungi, algae, and macrofoulers, typically progressing through initial attachment, biofilm formation, metabolite accumulation, and microbial corrosion.

Fig.2. Typical growth processes of algal organisms

* Source: Latest Research Progress of Marine Microbiological Corrosion and Bio-fouling, and New Approaches of Marine Anti-corrosion and Anti-fouling [20]. It is characterized by concealed onset, cumulative effects, and complex mechanisms. Existing studies generally categorize it into three types [22]:

(1) Non-structural fouling

Caused by the deposition of microbial pigments (e.g., melanin, carotenoids, phycobilins), producing black, yellow, or green staining. Although it does not directly damage the material, it degrades appearance and alters optical and moisture-related surface properties, facilitating further


microbial colonization [23].

(2) Functional fouling

Originates from biofilm formed by extracellular polymeric substances (EPS). Biofilms increase roughness and enhance adhesion of dust, particulates, and organics, and may clog capillary pores, impeding moisture and gas transport. This leads to scaling, chalking, and surface softening, reducing impermeability and self-cleaning ability and fostering composite fouling layers [24].

(3) Structural fouling

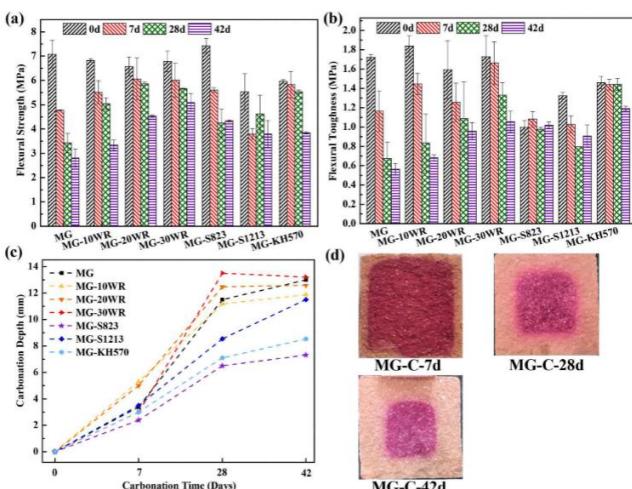
Driven by corrosive microbial metabolites such as organic acids, sulfides, and ammonia, causing dissolution, alkalinity loss, pore structure alteration, and elevated moisture content, as shown in Fig3. These changes accelerate carbonation, decalcification, and sulfate reactions [23]. In marine settings, microbial-induced corrosion (MIC), combined with the localized stress from barnacles and mussels, disrupts surface uniformity and promotes microcrack initiation, significantly reducing durability [25-26].

Fig.3. Algae filaments grow inside the concrete

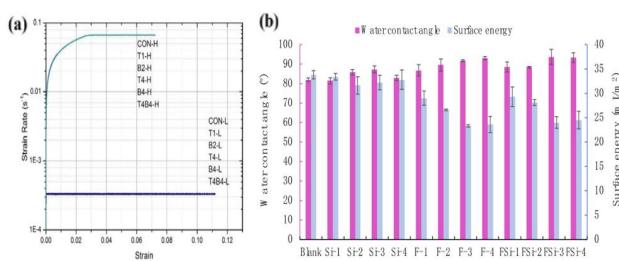
* Source: Microscopic Study into Biodeterioration of Marine Concrete [26]

2. Progress in Anti-Fouling Coatings for Concrete

2.1. Barrier-Type Coatings


Barrier-type coatings form dense, continuous layers on concrete surfaces to block moisture, Cl^- , SO_4^{2-} , and acidic media, delaying degradation and enhancing durability. Common materials include epoxy, polyurethane, acrylic, and inorganic silicate coatings.

Epoxy coatings feature high crosslink density and low porosity; for instance, kaolin/epoxy composites still exhibit ~80% lower R_p than uncoated samples after three wet-dry cycles [27], as shown in Fig4. Polyurethane coatings, valued for flexibility, suit microcracked or impact-prone concrete; asphalt-polyurethane (As/PU) composites maintain ~0.9× compressive strength after 28-day immersion in 3% H_2SO_4 [28]. Bio-based polyurethanes show improved dynamic performance, with bending strain rate rising from 0.00033 to

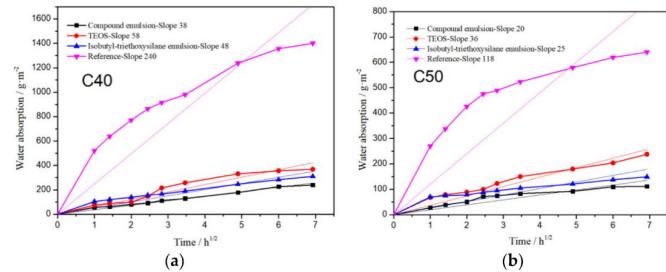

0.067 s⁻¹ and impact strain energy density increasing $\sim 11.3 \times$ under dynamic loading [29], as shown in Fig5(a). Acrylic coatings can penetrate 20-30 mm into concrete to fill microcracks; after fluorosilane modification, contact angle increased from 82.0° to 93.7°, and surface energy decreased from 33.8 to 24.0 mJ/m² [30], as shown in Fig5(b).

However, long-term weathering and environmental stability remain concerns. Epoxy loses interfacial adhesion under heat, moisture, and UV [31]; TDI monomer release during polyurethane curing may reach 0.3 mg/m³, accelerating aging at crack tips [32]; acrylics often retain residual monomer, a potential carcinogen, though modification can reduce it below 0.05%. Moreover, acrylics have poor water compatibility and relatively lower hardness and abrasion resistance.

Fig.4. Increase of Rp of the cylinders coated with MG, MG-WR and MG-SCA compared to uncoated samples cured for different ages and conditioned for (a)0,(b)2 and (c)3 cycles of seawater wet-dry conditioning, and(d)the decrease of Rp after 2 and 3 wet-dry conditioning cycles

* Source: Coating performance, durability and anti-corrosion mechanism of organic modified geopolymers composite for marine concrete protection [27]

Fig.5.(a) The actual strain rate-strain curves of test specimens at varying strain rates,(b) Contact angle and surface energy of the hardened modified resins


* Source: Behaviour of concrete specimens retrofitted with

bio-based polyurethane coatings under dynamic loads [29]. Multiscale modification on acrylic resin coating for concrete with silicon/fluorine and graphene oxide (GO) nanosheets [30]

2.2. Anti-Organic-Fouling Coatings

Concrete in traffic, food-processing, and marine environments is prone to oil and organic contamination, which affects appearance and surface performance. Superhydrophilic hydration layer coatings have recently attracted attention [33]. Their mechanism involves introducing hydrophilic polymer chains on the surface, which rapidly absorb water to form a stable hydration layer. This layer exhibits low oil adhesion and excellent self-cleaning. PSBMA significantly enhances surface hydrophilicity and reduces protein adsorption; Cu-modified PDA-based coatings show >90% antibacterial efficiency and 85% reduction in protein adsorption. PEG coatings rely on ether-water hydrogen bonding to resist adsorption of diverse organics; TEOS-modified PEG emulsions reduce capillary water absorption by ~84.1% (C40) and 83.1% (C50) [34], as shown in Fig6. Superhydrophilic coatings from TiO₂ nanoparticles and siloxane oligomers reduce water uptake by >85%, display a 152° contact angle with chloroform, and allow easy removal of oil and dust without detergents [35].

Compared with traditional barrier coatings, hydration-layer coatings offer environmental friendliness and high biocompatibility, showing potential for marine oil spill protection and nearshore anti-fouling applications [36]. However, chemical, mechanical, and long-term stability remain limited; in 3.5 wt.% NaCl, pH 5, and pH 9 solutions, performance declines. Molecular design, interfacial engineering, and fabrication optimization are required to achieve durable, high-efficiency anti-fouling [37].

Fig.6. Effects of capillary water absorption of concrete for different coating: (a) C40; (b) C50

* Source: Preparation of Modified Silane Composite Emulsion and Its Effect on Surface Properties of

2.3. Antimicrobial / Anti-Biofouling Coatings

Concrete structures in marine, hydraulic, and high-humidity environments are prone to biofouling by bacteria, fungi, algae, and larger organisms, which increase surface roughness and promote biofilm formation, accelerating microbiologically influenced corrosion (MIC) and compromising durability [38-39].

Antimicrobial/anti-biofouling coatings inhibit microbial attachment and growth via chemical, photocatalytic, or contact-killing mechanisms [40].

Chemical killing relies on active metal ions (e.g., Ag^+ , Cu_2O , ZnO) to disrupt microbial metabolism. ZnO-NPs combinations can suppress biofilm formation by 65–85% [41], while Ag-NPs reduce *E. coli* by ~ 5.8 log CFU/cm² and *S. aureus* by ~ 4.11 log CFU/cm² [42]. However, these coatings mainly act in early fouling stages, and sustained ion release poses environmental risks; for example, organotin compounds (TBT) persist in marine environments, bioaccumulate, and disrupt endocrine systems [43]. In addition, metal ion agents may be incompatible with coating matrices, e.g., Cu_2O in epoxy or fluorocarbon systems can weaken crosslinking, reducing adhesion and tensile strength [44].

Photocatalytic killing, exemplified by TiO_2 , generates OH^- and O_2^- under UV or visible light, oxidizing microbial membranes and DNA, as shown in Table 2. Fe-doped TiO_2 (1 g/L) achieved 3.57 ± 0.21 log (*E. coli*) and 3.49 ± 0.42 log (*S. aureus*) reduction under 240 min visible light, reaching 99.97% killing efficiency [45]. Effectiveness declines under low light or underwater conditions [46]; element doping, graphene composites, or noble metal modifications expand light response but increase cost and environmental concerns [47].

Contact-killing coatings introduce cationic groups (e.g., quaternary ammonium salts, guanidine polymers) that disrupt microbial membranes electrostatically. QAC-functionalized coatings reduce *E. coli*, drug-resistant *A. baumannii*, and *Listeria monocytogenes* by >5.0 log CFU/cm² (~99.999%) within seconds [48]. However, covalently grafted functional polymers lose activity if the coating suffers mechanical damage, chemical cleaning, or aging, limiting long-term efficacy [49].

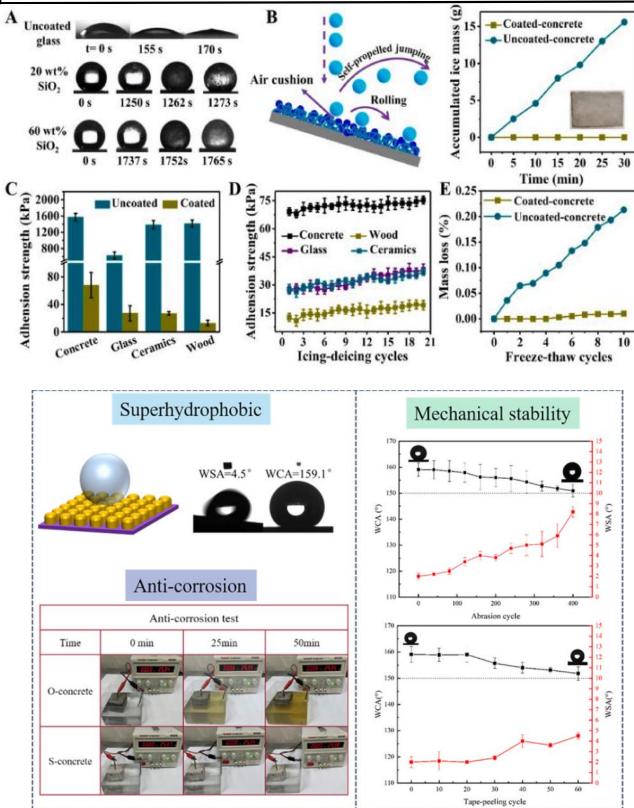
Overall, antimicrobial/anti-biofouling coatings effectively

suppress microbial adhesion and biofilm formation, offering a key strategy against concrete bio-corrosion. Yet, chemical toxicity, photocatalytic light dependence, and contact-killing durability remain challenges, necessitating further optimization in material design, interface engineering, and ecological safety.

Table 2. Photocatalytic efficiency of cementitious materials with titanium dioxide incorporation

Material	Application Process	Quantity	Efficiency	Environmental Conditions	Observations
Anatase I	Mixing technique	10% by weight	44.1 mg $\times \text{h}^{-1} \times \text{m}^{-2}$	Flow rate 1.0 L $\times \text{min}^{-1}$; UV-A radiation 10 ± 2 W $\times \text{m}^{-2}$, relative atmospheric humidity $50 \pm 5\%$ and pollutant concentration (NO_x) 20 ppmv.	The efficiency is in terms of removal of NO_x .
			11.71 mg $\times \text{h}^{-1} \times \text{m}^{-2}$		
			37.24 mg $\times \text{h}^{-1} \times \text{m}^{-2}$		
Rutile	Dip coating	-	87% of MG, 80% MB and 65% MO	UV irradiation, room temperature.	The photocatalytic material was added to WPC blocks. The efficiency is in terms of percent of decomposit
Nano-TiO ₂ -SiO ₂					

						ion of dyes.				
P25 (75 % anat ase and 25% rutil e)	Mixi ng techn ique	2% by weigh t of binde rs	NO _x removal rate: 28 μmol m ⁻² × h ⁻¹ . NO _x removal ratio: 5.8%	24 h UV-A irradiati on.	The TiO ₂ was incorpo rated in self-compa cting glass mortar (SCGM). WPC and metakaolin were used as cementitiou s materials.					
Nan o-Ti O ₂	Dip coati ng and vacu um satur ation	TiO ₂ ethan ol suspe nsion of 0.05 g × mL ⁻¹	Toluene removal efficiency : 95 % eliminatio n rate: 60–70 mg × m ⁻² × h ⁻¹	24 °C, 52% relative humidit y.	Initial toluene concentrati on: 15 ppmv gas residence time: 3 min.					


* Source: Challenges and Opportunities of Using Titanium Dioxide Photocatalysis on Cement-Based Materials [46]

3.Surface-Energy-Controlled Coatings

Surface-energy-controlled coatings reduce the free energy of concrete surfaces, hindering wetting or adhesion of dust, sediments, oils, and biofouling proteins, thereby achieving anti-fouling and self-cleaning. Inspired by the lotus effect (static water contact angle >150°, roll angle ~2°) [50-51], as shown in Fig7.superhydrophobic coatings are created by combining micro/nano surface structures with low-surface-energy materials, forming a solid-gas-liquid interface. Droplets rest on trapped air within the microstructures (Cassie state) [52].

Fig.7. Superhydrophobic Phenomenon in Nature

Yang et al. [53] developed a sprayable superhydrophobic antibacterial coating exploiting concrete hydrophilicity and capillarity, reaching 162.4° contact angle, 5° roll angle, >70% water repellency improvement, and 84.6% (E. coli) / 90.4% (S. epidermidis) antibacterial rates. Song et al. [54] produced low-cost, fluorine-free, mechanically robust coatings (160 ± 1° contact, 6.5 ± 0.5° roll) maintaining superhydrophobicity after blade scratches and sandpaper abrasion, with excellent anti-icing, corrosion resistance, and low ice adhesion. Gu et al. [55] reported multi-layer surfaces retaining 154.4° contact and 4.3° roll after 115 days outdoor exposure. Wu et al. [56] used perfluorinated copolymers with SiO₂ nanoparticles to delay ice formation 1765 s at -20 °C and reduce ice adhesion 22-fold, as shown in Fig8. Kong et al. [57] fabricated hierarchical DE/Al₂O₃@STA-geopolymer surfaces, achieving 159.1 contact angle and 4.5° roll angle, with excellent water repellency, self-cleaning, and resistance to Cl⁻ corrosion and mechanical abrasion. However, the Cassie state is thermodynamically metastable and vulnerable: static pressure or impacts exceeding the Laplace limit, prolonged immersion, or droplet evaporation can collapse the air layer; mechanical wear or oil contamination damages microstructures; its energy barrier is lower than the Wenzel state, allowing irreversible transition to full wetting [58-60]. These intrinsic limitations critically restrict long-term stability and anti-fouling performance of superhydrophobic coatings in real-world applications.

Fig.8. Anti-icing performance of the FSC4/SiO₂F composite coating.(A)Photographs showed dynamic icing process of 2 uL water droplets on the untreated and FSC/SiO₂-F coated surface at -20 °C.(B)Schematic illustration of the cold-rain simulated experiments, and the accumulated ice mass as a function of the treating time.(C)Ice adhesion strength of various FSC₄/SiO₂-F coated substrates.(D)Ice adhesion strength as a function of icing-deicing cycles.(E)Mass loss of coated and uncoated concrete as a function of freeze-thaw cycles. (F) The surface contact angle and rolling angle of superhydrophobic concrete

* Source: An extremely chemical and mechanically durable siloxane bearing copolymer coating with self-crosslinkable and anti-icing properties.[56] Superhydrophobic concrete coating with excellent mechanical robustness and anti-corrosion performances.[57]

Conclusion

Surface fouling and bioadhesion are critical factors that limit the long-term durability of concrete structures in marine environments. Compared with conventional antifouling strategies based on the release of active agents, surface-energy-regulated coatings can fundamentally reduce fouling by weakening the interfacial interactions between contaminants and substrates, offering clear advantages in

terms of environmental friendliness and long-term stability. Among them, superhydrophobic coatings, featuring low surface energy, micro/nanostructured roughness, and excellent self-cleaning behavior, have demonstrated considerable potential in suppressing sediment deposition, organic contamination, and early-stage biofouling.

Nevertheless, the engineering application of superhydrophobic coatings on concrete still faces several challenges, including insufficient mechanical robustness of micro/nanostructures under abrasion and erosion, limited adhesion to concrete substrates, and difficulties in large-area and complex-surface fabrication. In addition, issues related to material cost, process complexity, and long-term performance degradation require further investigation.

Future efforts should focus on enhancing mechanical durability and interfacial bonding, developing multifunctional protective systems, and promoting scalable fabrication techniques suitable for practical engineering applications. With continuous advances in surface engineering, materials science, and construction technologies, surface-energy-regulated superhydrophobic coatings are expected to play an increasingly important role in antifouling protection and durability enhancement of marine concrete structures.

REFERENCES

1. Liu, M., & Zhang, L. (2020). Research on concrete durability and protection technology in marine environment. *Journal of Coastal Research*, 109(SI), 206-209.
2. Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. *Nature Reviews Earth & Environment*, 1(11), 559-573.
3. Chen, X., Yu, C., Wang, L., & Yu, B. (2024). A comprehensive review of the bio-corrosion mechanisms, hydrodynamics and antifouling measures on marine concrete. *Ocean Engineering*, 310, 118696.
4. Wang, D., Guan, F., Feng, C., Mathivanan, K., Zhang, R., & Sand, W. (2023). Review on microbially influenced concrete corrosion. *Microorganisms*, 11(8), 2076.
5. Liu, Q., Liao, Z., Xiong, Y., Liu, Z., & Zhang, W. (2023). Effect of imitation fair-faced curing and protective coating on the durability of concrete. *Journal of Building Engineering*, 63, 105540.

6. Woyciechowski, P., Łukowski, P., Szmigiera, E., Adamczewski, G., Chilmon, K., & Spodzieja, S. (2021). Concrete corrosion in a wastewater treatment plant—A comprehensive case study. *Construction and Building Materials*, 303, 124388.

7. Lee, T., Kim, D., Cho, S., & Kim, M. O. (2025). Advancements in Surface Coatings and Inspection Technologies for Extending the Service Life of Concrete Structures in Marine Environments: A Critical Review. *Buildings*, 15(3), 304.

8. Zhang, H., Xing, H. F., & Li, H. M. (2022). Mechanical characteristic and microstructure of salt-rich cement soil. *Bulletin of Engineering Geology and the Environment*, 81(3), 92.

9. Wang, R., Feng, X., Chen, Y., Bian, S., & Qian, C. (2024). Superhydrophobic coating in cement mortar via inherent microstructure for enhanced efflorescence resistance. *Journal of Building Engineering*, 98, 111364.

10. Luo, Y., Gao, X., Wang, D., Liu, Y., Zhang, Q., Li, J., ... & Xue, G. (2024). Study on the efflorescence behavior of concrete by adding metakaolin. *Journal of Building Engineering*, 83, 108396.

11. Liang, T., Zhou, J., & Wu, Q. (2023). Experimental investigation on leaching behavior of ultra-high performance concrete submitted to a flow environment. *Construction and Building Materials*, 372, 130843.

12. Kou, C., Qi, Y., Kang, A., Hu, H., & Wu, X. (2021). Spatiotemporal distribution characteristics of runoff-pollutants from three types of urban pavements. *Journal of Cleaner Production*, 292, 125885.

13. Svintsov, A. P., Nikolenko, Y. V., & Fediuk, R. S. (2022). Aggressive effect of vegetable oils and organic fatty acids on cement-sand mortar and concrete. *Construction and Building Materials*, 329, 127037.

14. Omar, M. H., Almeshal, I., Tayeh, B. A., & Bakar, B. A. (2022). Studying the properties of epoxy polymer concrete reinforced with steel and glass fibers subjected to cycles of petroleum products. *Case Studies in Construction Materials*, 17, e01668.

15. Diab, H. (2012). Compressive strength performance of low-and high-strength concrete soaked in mineral oil. *Construction and Building Materials*, 33, 25-31.

16. García-Florentino, C., Maguregui, M., Carrero, J. A., Morillas, H., Arana, G., & Madariaga, J. M. (2020). Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. *Journal of cleaner production*, 268, 122134.

17. Ozga, I., Bonazza, A., Bernardi, E., Tittarelli, F., Favoni, O., Ghedini, N., ... & Sabbioni, C. (2011). Diagnosis of surface damage induced by air pollution on 20th-century concrete buildings. *Atmospheric Environment*, 45(28), 4986-4995.

18. Fernandez, V. R., de la Villa Mencía, R. V., Rojas, M. F., Giménez, R. G., Moreno-Juez, J., & de Soto García, I. S. (2024). Construction and demolition waste in cement matrices as sinkholes of atmospheric pollution: Effect of the 2022 airborne dust in the Iberian Peninsula. *Journal of Hazardous Materials*, 464, 132929.

19. Tabatabaei, J. (2019). The effect of TiO₂ nanoparticles in reduction of environmental pollution in concrete structures. *Advances in concrete construction*, 7(2), 127.

20. Li, Y., & Ning, C. (2019). Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. *Bioactive materials*, 4, 189-195.

21. Zarzuela, R., Cervera, J. J., Moreno, I., Gil, M. A., & Mosquera, M. J. (2023). Exploring the low cell adhesion of photoinduced superhydrophilic surfaces for improving the effect of antifouling protective coatings on porous building materials. *Construction and Building Materials*, 400, 132573.

22. Rong, H., Bao, Q., Huang, J., Song, Z., Liu, X., Huang, K., ... & Liu, Z. (2025). A Review on Algal Corrosion of Marine Concrete. *Journal of Wuhan University of Technology-Mater. Sci. Ed.*, 40(4), 1057-1066.

23. Liu, M., Li, S., Wang, H., Jiang, R., & Zhou, X. (2021). Research progress of environmentally friendly marine antifouling coatings. *Polymer Chemistry*, 12(26), 3702-3720.

24. Manso, S., Calvo-Torras, M. Á., De Belie, N., Segura, I., & Aguado, A. (2015). Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions. *Science of The Total Environment*, 512, 444-453.

25. Zhou, A., Sand, W., Wang, X., Geng, Y., Ban, X., Jin, Z., & Zhang, R. (2025). Self-growing composite photocatalytic materials for surface self-renewal of marine antifouling coatings. *Separation and Purification Technology*, 354, 129387.

26. Hughes, P., Fairhurst, D., Sherrington, I., Renevier, N., Morton, L. H. G., Robery, P. C., & Cunningham, L. (2013). Microscopic study into biodeterioration of marine concrete. *International Biodeterioration & Biodegradation*, 79, 14-19.

27. Zhang, M., Xu, H., Zeze, A. L. P., Liu, X., & Tao, M. (2022).

Coating performance, durability and anti-corrosion mechanism of organic modified geopolymers composite for marine concrete protection. *Cement and Concrete Composites*, 129, 104495.

28. Elnaggar, E. M., Elsokkary, T. M., Shohide, M. A., El-Sabbagh, B. A., & Abdel-Gawwad, H. A. (2019). Surface protection of concrete by new protective coating. *Construction and Building Materials*, 220, 245-252.

29. Somarathna, H. M. C. C., Raman, S. N., Mohotti, D., Mutalib, A. A., & Badri, K. H. (2021). Behaviour of concrete specimens retrofitted with bio-based polyurethane coatings under dynamic loads. *Construction and Building Materials*, 270, 121860.

30. Huang, H., Fang, S., Luo, S., Hu, J., Yin, S., Wei, J., & Yu, Q. (2021). Multiscale modification on acrylic resin coating for concrete with silicon/fluorine and graphene oxide (GO) nanosheets. *Construction and Building Materials*, 305, 124297.29. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion

31. Li, G., Hu, W., Cui, H., & Zhou, J. (2019). Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO₂ modified polymer coatings. *Construction and Building Materials*, 201, 623-630.

32. Zhang, H., Wang, F., & Guo, Z. (2024). The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. *Advances in Colloid and Interface Science*, 325, 103097.

33. Zhu, Z., Gao, Q., Long, Z., Huo, Q., Ge, Y., Vianney, N., ... & Wang, B. (2021). Polydopamine/poly (sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO₄/H₂O₂ on implants for improved surface hemocompatibility and antibacterial activity. *Bioactive materials*, 6(8), 2546-2556.

34. Chen, X., Geng, Y., Li, S., Hou, D., Meng, S., Gao, Y., ... & Ai, H. (2021). Preparation of modified silane composite emulsion and its effect on surface properties of cement-based materials. *Coatings*, 11(3), 272.

35. Carrascosa, L. A., Zarzuela, R., Badreldin, N., & Mosquera, M. J. (2020). A simple, long-lasting treatment for concrete by combining hydrophobic performance with a photoinduced superhydrophilic surface for easy removal of oil pollutants. *ACS applied materials & interfaces*, 12(17), 19974-19987.

36. Maryudi, M., Rahayu, A., & Hakika, D. C. (2023). Effectiveness of polyethylene glycol-coated silica on ions adsorption in industrial wastewater. *Polimery*, 68(5), 259-263.

37. Zhang, F., Zhao, X., Dong, C., Zhang, H., Wang, C., Wang, H., & Liu, F. Bioinspired Self-Healing Superhydrophilic Coatings for Extreme Underwater Environments. Available at SSRN 5262481.

38. Wang, D., Guan, F., Feng, C., Mathivanan, K., Zhang, R., & Sand, W. (2023). Review on microbially influenced concrete corrosion. *Microorganisms*, 11(8), 2076.

39. Li, Y., & Ning, C. (2019). Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. *Bioactive materials*, 4, 189-195.

40. Ubaldi, F., Valeriani, F., Volpini, V., Lofrano, G., & Romano Spica, V. (2024). Antimicrobial activity of photocatalytic coatings on surfaces: A systematic review and meta-analysis. *Coatings*, 14(1), 92.

41. Abdelghafar, A., Yousef, N., & Askoura, M. (2022). Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate *Staphylococcus aureus* virulence in host; an important message to clinicians. *BMC microbiology*, 22(1), 244.

42. Fontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. *Foods*, 9(4), 442.

43. Vilas-Boas, C., Silva, E. R., Resende, D., Pereira, B., Sousa, G., Pinto, M., ... & Sousa, E. (2023). 3, 4-Dioxygenated xanthones as antifouling additives for marine coatings: In silico studies, seawater solubility, degradability, leaching, and antifouling performance. *Environmental Science and Pollution Research*, 30(26), 68987-68997.

44. Riyazuddin, Bano, S., Husain, F. M., Siddique, J. A., Alharbi, K. H., Khan, R. A., & Alsalme, A. (2020). Role of copper oxide on epoxy coatings with new intumescence polymer-based fire retardant. *Molecules*, 25(24), 5978.

45. Channa, N., Gadhi, T. A., Freyria, F. S., Chiadò, A., Blangetti, N., Ditaranto, N., & Bonelli, B. (2025). Photocatalytic Disinfection of Selected Waterborne Pathogens by Visible Light-Active Nano Iron-Doped TiO₂ Obtained by a Sol-Gel Method. *ACS Applied Nano Materials*, 8(19), 10066-10079.

46. Castro-Hoyos, A. M., Rojas Manzano, M. A., & Maury-Ramírez, A. (2022). Challenges and opportunities of using titanium dioxide photocatalysis on cement-based materials. *Coatings*, 12(7), 968.

47. Hamdany, A. H., Ding, Y., & Qian, S. (2023). Graphene-based TiO₂ cement composites to enhance the

antibacterial effect of self-disinfecting surfaces. *Catalysts*, 13(9), 1313.

48. Bento de Carvalho, T., Barbosa, J. B., & Teixeira, P. (2023). Effectiveness and durability of a quaternary ammonium compounds-based surface coating to reduce surface contamination. *Biology*, 12(5), 669.

49. Marzullo, P., Gruttaduria, M., & D'Anna, F. (2024). Quaternary ammonium salts-based materials: A review on environmental toxicity, anti-fouling mechanisms and applications in marine and water treatment industries. *Biomolecules*, 14(8), 957.

50. Li, S., Liu, X., Xing, C., Tan, Y., Xiao, A., Wei, Y., ... & Dai, M. (2025). Preparation of superhydrophobic photothermal coatings via sequentially grown mesoporous silica-coated CNTs for anti-icing applications on cement concrete. *Journal of Building Engineering*, 105, 112449.

51. Tian, H., Zhan, Y., Tian, L., & Sun, J. (2023). Corrosion resistance self-healing coating with bioinspired interfacial structure. *Progress in Organic Coatings*, 174, 107303.

52. Gu, Z., Zhao, M., Liu, Q., Mao, C., Zhang, L., Sun, X., & Lv, S. (2024). Photothermal superhydrophobic coating for concrete: Highly effective anti/deicing performance and corrosion resistance. *Materials Today Communications*, 41, 110623.

53. Yang, F., Zhou, W., Li, F., Yuan, L., Diao, Y., Liu, Y., ... & Wang, D. (2022). Sprayable coating based on fluorinated silica nanocomposites with superhydrophobic and antibacterial properties for advanced concrete. *Progress in Natural Science: Materials International*, 32(4), 472-481.

54. Song, J., Li, Y., Xu, W., Liu, H., & Lu, Y. (2019). Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. *Journal of colloid and interface science*, 541, 86-92.

55. Gu, W., Li, W., Zhang, Y., Xia, Y., Wang, Q., Wang, W., ... & Zhang, Y. (2023). Ultra-durable superhydrophobic cellular coatings. *Nature communications*, 14(1), 5953.

56. Wu, Y. L., She, W., Shi, D., Jiang, T., Hao, T. H., Liu, J., ... & Li, R. Y. (2020). An extremely chemical and mechanically durable siloxane bearing copolymer coating with self-crosslinkable and anti-icing properties. *Composites Part B: Engineering*, 195, 108031.

57. Kong, X., Shen, Y., Shi, J., Zhang, N., Kang, R., & Fu, Y. (2024). Superhydrophobic concrete coating with excellent mechanical robustness and anti-corrosion performances. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 684, 133157.