Skip to main navigation menu Skip to main content Skip to site footer

Research Article

Vol. 1 No. 3 (2025): International Journal of Multidisciplinary Research

Concrete Anti-Fouling Coatings: Progress from Barrier Layers to Liquid-Infused Slippery Surfaces

DOI
https://doi.org/10.65231/ijmr.v1i3.44
Submitted
November 23, 2025
Published
2025-12-30

Abstract

Concrete surfaces in marine, hydraulic, and urban environments are prone to physical, chemical, and biological fouling, accelerating degradation and reinforcement corrosion. Surface coatings offer protection, including barrier-type, superhydrophilic hydration-layer, antimicrobial, superhydrophobic, and liquid-infused slippery coatings. Barrier coatings provide physical isolation but suffer from limited durability; superhydrophilic and antimicrobial coatings improve self-cleaning and bio-resistance yet face mechanical and chemical stability challenges. Superhydrophobic coatings reduce contaminant adhesion via micro-/nano-structures, but air-trapped interfaces are easily disrupted. Liquid-infused slippery coatings stabilize a lubricating layer within porous structures, achieving low friction, anti-fouling, low adhesion, and self-healing properties. This review summarizes fouling mechanisms, evaluates coating strategies, and highlights ultraslippery coatings as a promising approach for durable, environmentally friendly concrete protection in harsh conditions.

References

  1. [1]Liu, M., & Zhang, L. (2020). Research on concrete durability and protection technology in marine environment. Journal of Coastal Research, 109(SI), 206-209.
  2. [2]Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 1(11), 559-573.
  3. [3]Chen, X., Yu, C., Wang, L., & Yu, B. (2024). A comprehensive review of the bio-corrosion mechanisms, hydrodynamics and antifouling measures on marine concrete. Ocean Engineering, 310, 118696.
  4. [4]Wang, D., Guan, F., Feng, C., Mathivanan, K., Zhang, R., & Sand, W. (2023). Review on microbially influenced concrete corrosion. Microorganisms, 11(8), 2076.
  5. [5]Liu, Q., Liao, Z., Xiong, Y., Liu, Z., & Zhang, W. (2023). Effect of imitation fair-faced curing and protective coating on the durability of concrete. Journal of Building Engineering, 63, 105540.
  6. [6]Woyciechowski, P., Łukowski, P., Szmigiera, E., Adamczewski, G., Chilmon, K., & Spodzieja, S. (2021). Concrete corrosion in a wastewater treatment plant–A comprehensive case study. Construction and Building Materials, 303, 124388.
  7. [7]Lee, T., Kim, D., Cho, S., & Kim, M. O. (2025). Advancements in Surface Coatings and Inspection Technologies for Extending the Service Life of Concrete Structures in Marine Environments: A Critical Review. Buildings, 15(3), 304.
  8. [8]Zhang, H., Xing, H. F., & Li, H. M. (2022). Mechanical characteristic and microstructure of salt-rich cement soil. Bulletin of Engineering Geology and the Environment, 81(3), 92.
  9. [9]Wang, R., Feng, X., Chen, Y., Bian, S., & Qian, C. (2024). Superhydrophobic coating in cement mortar via inherent microstructure for enhanced efflorescence resistance. Journal of Building Engineering, 98, 111364.
  10. [10]Luo, Y., Gao, X., Wang, D., Liu, Y., Zhang, Q., Li, J., ... & Xue, G. (2024). Study on the efflorescence behavior of concrete by adding metakaolin. Journal of Building Engineering, 83, 108396.
  11. [11]Liang, T., Zhou, J., & Wu, Q. (2023). Experimental investigation on leaching behavior of ultra-high performance concrete submitted to a flow environment. Construction and Building Materials, 372, 130843.
  12. [12]Kou, C., Qi, Y., Kang, A., Hu, H., & Wu, X. (2021). Spatiotemporal distribution characteristics of runoff-pollutants from three types of urban pavements. Journal of Cleaner Production, 292, 125885.
  13. [13]Svintsov, A. P., Nikolenko, Y. V., & Fediuk, R. S. (2022). Aggressive effect of vegetable oils and organic fatty acids on cement-sand mortar and concrete. Construction and Building Materials, 329, 127037.
  14. [14]Omar, M. H., Almeshal, I., Tayeh, B. A., & Bakar, B. A. (2022). Studying the properties of epoxy polymer concrete reinforced with steel and glass fibers subjected to cycles of petroleum products. Case Studies in Construction Materials, 17, e01668.
  15. [15]Diab, H. (2012). Compressive strength performance of low-and high-strength concrete soaked in mineral oil. Construction and Building Materials, 33, 25-31.
  16. [16]García-Florentino, C., Maguregui, M., Carrero, J. A., Morillas, H., Arana, G., & Madariaga, J. M. (2020). Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. Journal of cleaner production, 268, 122134.
  17. [17]Ozga, I., Bonazza, A., Bernardi, E., Tittarelli, F., Favoni, O., Ghedini, N., ... & Sabbioni, C. (2011). Diagnosis of surface damage induced by air pollution on 20th-century concrete buildings. Atmospheric Environment, 45(28), 4986-4995.
  18. [18]Fernandez, V. R., de la Villa Mencía, R. V., Rojas, M. F., Giménez, R. G., Moreno-Juez, J., & de Soto García, I. S. (2024). Construction and demolition waste in cement matrices as sinkholes of atmospheric pollution: Effect of the 2022 airborne dust in the Iberian Peninsula. Journal of Hazardous Materials, 464, 132929.
  19. [19]Tabatabaei, J. (2019). The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures. Advances in concrete construction, 7(2), 127.
  20. [20]Li, Y., & Ning, C. (2019). Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioactive materials, 4, 189-195.
  21. [21]Zarzuela, R., Cervera, J. J., Moreno, I., Gil, M. A., & Mosquera, M. J. (2023). Exploring the low cell adhesion of photoinduced superhydrophilic surfaces for improving the effect of antifouling protective coatings on porous building materials. Construction and Building Materials, 400, 132573.
  22. [22]Rong, H., Bao, Q., Huang, J., Song, Z., Liu, X., Huang, K., ... & Liu, Z. (2025). A Review on Algal Corrosion of Marine Concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 40(4), 1057-1066.
  23. [23]Liu, M., Li, S., Wang, H., Jiang, R., & Zhou, X. (2021). Research progress of environmentally friendly marine antifouling coatings. Polymer Chemistry, 12(26), 3702-3720.
  24. [24]Manso, S., Calvo-Torras, M. Á., De Belie, N., Segura, I., & Aguado, A. (2015). Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions. Science of The Total Environment, 512, 444-453.
  25. [25]Zhou, A., Sand, W., Wang, X., Geng, Y., Ban, X., Jin, Z., & Zhang, R. (2025). Self-growing composite photocatalytic materials for surface self-renewal of marine antifouling coatings. Separation and Purification Technology, 354, 129387.
  26. [26]Hughes, P., Fairhurst, D., Sherrington, I., Renevier, N., Morton, L. H. G., Robery, P. C., & Cunningham, L. (2013). Microscopic study into biodeterioration of marine concrete. International Biodeterioration & Biodegradation, 79, 14-19.
  27. [27]Zhang, M., Xu, H., Zeze, A. L. P., Liu, X., & Tao, M. (2022). Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection. Cement and Concrete Composites, 129, 104495.
  28. [28]Elnaggar, E. M., Elsokkary, T. M., Shohide, M. A., El-Sabbagh, B. A., & Abdel-Gawwad, H. A. (2019). Surface protection of concrete by new protective coating. Construction and Building Materials, 220, 245-252.
  29. [29]Somarathna, H. M. C. C., Raman, S. N., Mohotti, D., Mutalib, A. A., & Badri, K. H. (2021). Behaviour of concrete specimens retrofitted with bio-based polyurethane coatings under dynamic loads. Construction and Building Materials, 270, 121860.
  30. [30]Huang, H., Fang, S., Luo, S., Hu, J., Yin, S., Wei, J., & Yu, Q. (2021). Multiscale modification on acrylic resin coating for concrete with silicon/fluorine and graphene oxide (GO) nanosheets. Construction and Building Materials, 305, 124297.29. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion
  31. [31]Li, G., Hu, W., Cui, H., & Zhou, J. (2019). Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings. Construction and Building Materials, 201, 623-630.
  32. [32]Zhang, H., Wang, F., & Guo, Z. (2024). The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Advances in Colloid and Interface Science, 325, 103097.
  33. [33]Zhu, Z., Gao, Q., Long, Z., Huo, Q., Ge, Y., Vianney, N., ... & Wang, B. (2021). Polydopamine/poly (sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial activity. Bioactive materials, 6(8), 2546-2556.
  34. [34]Chen, X., Geng, Y., Li, S., Hou, D., Meng, S., Gao, Y., ... & Ai, H. (2021). Preparation of modified silane composite emulsion and its effect on surface properties of cement-based materials. Coatings, 11(3), 272.
  35. [35]Carrascosa, L. A., Zarzuela, R., Badreldin, N., & Mosquera, M. J. (2020). A simple, long-lasting treatment for concrete by combining hydrophobic performance with a photoinduced superhydrophilic surface for easy removal of oil pollutants. ACS applied materials & interfaces, 12(17), 19974-19987.
  36. [36]Maryudi, M., Rahayu, A., & Hakika, D. C. (2023). Effectiveness of polyethylene glycol-coated silica on ions adsorption in industrial wastewater. Polimery, 68(5), 259-263.
  37. [37]Zhang, F., Zhao, X., Dong, C., Zhang, H., Wang, C., Wang, H., & Liu, F. Bioinspired Self-Healing Superhydrophilic Coatings for Extreme Underwater Environments. Available at SSRN 5262481.
  38. [38]Wang, D., Guan, F., Feng, C., Mathivanan, K., Zhang, R., & Sand, W. (2023). Review on microbially influenced concrete corrosion. Microorganisms, 11(8), 2076.
  39. [39]Li, Y., & Ning, C. (2019). Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioactive materials, 4, 189-195.
  40. [40]Ubaldi, F., Valeriani, F., Volpini, V., Lofrano, G., & Romano Spica, V. (2024). Antimicrobial activity of photocatalytic coatings on surfaces: A systematic review and meta-analysis. Coatings, 14(1), 92.
  41. [41]Abdelghafar, A., Yousef, N., & Askoura, M. (2022). Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC microbiology, 22(1), 244.
  42. [42]Fontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods, 9(4), 442.
  43. [43]Vilas-Boas, C., Silva, E. R., Resende, D., Pereira, B., Sousa, G., Pinto, M., ... & Sousa, E. (2023). 3, 4-Dioxygenated xanthones as antifouling additives for marine coatings: In silico studies, seawater solubility, degradability, leaching, and antifouling performance. Environmental Science and Pollution Research, 30(26), 68987-68997.
  44. [44]Riyazuddin, Bano, S., Husain, F. M., Siddique, J. A., Alharbi, K. H., Khan, R. A., & Alsalme, A. (2020). Role of copper oxide on epoxy coatings with new intumescent polymer-based fire retardant. Molecules, 25(24), 5978.
  45. [45]Channa, N., Gadhi, T. A., Freyria, F. S., Chiadò, A., Blangetti, N., Ditaranto, N., & Bonelli, B. (2025). Photocatalytic Disinfection of Selected Waterborne Pathogens by Visible Light-Active Nano Iron-Doped TiO2 Obtained by a Sol–Gel Method. ACS Applied Nano Materials, 8(19), 10066-10079.
  46. [46]Castro-Hoyos, A. M., Rojas Manzano, M. A., & Maury-Ramírez, A. (2022). Challenges and opportunities of using titanium dioxide photocatalysis on cement-based materials. Coatings, 12(7), 968.
  47. [47]Hamdany, A. H., Ding, Y., & Qian, S. (2023). Graphene-based TiO2 cement composites to enhance the antibacterial effect of self-disinfecting surfaces. Catalysts, 13(9), 1313.
  48. [48]Bento de Carvalho, T., Barbosa, J. B., & Teixeira, P. (2023). Effectiveness and durability of a quaternary ammonium compounds-based surface coating to reduce surface contamination. Biology, 12(5), 669.
  49. [49]Marzullo, P., Gruttadauria, M., & D’Anna, F. (2024). Quaternary ammonium salts-based materials: A review on environmental toxicity, anti-fouling mechanisms and applications in marine and water treatment industries. Biomolecules, 14(8), 957.
  50. [50]Li, S., Liu, X., Xing, C., Tan, Y., Xiao, A., Wei, Y., ... & Dai, M. (2025). Preparation of superhydrophobic photothermal coatings via sequentially grown mesoporous silica-coated CNTs for anti-icing applications on cement concrete. Journal of Building Engineering, 105, 112449.
  51. [51]Tian, H., Zhan, Y., Tian, L., & Sun, J. (2023). Corrosion resistance self-healing coating with bioinspired interfacial structure. Progress in Organic Coatings, 174, 107303.
  52. [52]Gu, Z., Zhao, M., Liu, Q., Mao, C., Zhang, L., Sun, X., & Lv, S. (2024). Photothermal superhydrophobic coating for concrete: Highly effective anti/deicing performance and corrosion resistance. Materials Today Communications, 41, 110623.
  53. [53]Yang, F., Zhou, W., Li, F., Yuan, L., Diao, Y., Liu, Y., ... & Wang, D. (2022). Sprayable coating based on fluorinated silica nanocomposites with superhydrophobic and antibacterial properties for advanced concrete. Progress in Natural Science: Materials International, 32(4), 472-481.
  54. [54]Song, J., Li, Y., Xu, W., Liu, H., & Lu, Y. (2019). Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of colloid and interface science, 541, 86-92.
  55. [55]Gu, W., Li, W., Zhang, Y., Xia, Y., Wang, Q., Wang, W., ... & Zhang, Y. (2023). Ultra-durable superhydrophobic cellular coatings. Nature communications, 14(1), 5953.
  56. [56]Wu, Y. L., She, W., Shi, D., Jiang, T., Hao, T. H., Liu, J., ... & Li, R. Y. (2020). An extremely chemical and mechanically durable siloxane bearing copolymer coating with self-crosslinkable and anti-icing properties. Composites Part B: Engineering, 195, 108031.
  57. [57]Kong, X., Shen, Y., Shi, J., Zhang, N., Kang, R., & Fu, Y. (2024). Superhydrophobic concrete coating with excellent mechanical robustness and anti-corrosion performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 684, 133157.
  58. [58]Pang, B., Jin, Z., Zhang, Y., Liu, Z., She, W., Wang, P., ... & Gao, S. (2022). Ultraductile cementitious structural health monitoring coating: waterborne polymer biomimetic muscle and polyhedral oligomeric silsesquioxane‐assisted C‐S‐H dispersion. Advanced Functional Materials, 32(51), 2208676.
  59. [59]Jin, H., Tian, L., Bing, W., Zhao, J., & Ren, L. (2022). Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 124, 100889.
  60. [60]Selim, M. S., Shenashen, M. A., El-Safty, S. A., Higazy, S. A., Selim, M. M., Isago, H., & Elmarakbi, A. (2017). Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials Science, 87, 1-32.
  61. [61]Wong, T. S., Kang, S. H., Tang, S. K., Smythe, E. J., Hatton, B. D., Grinthal, A., & Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477(7365), 443-447.
  62. [62]Yan, W., Xue, S., Xiang, B., Zhao, X., Zhang, W., Mu, P., & Li, J. (2023). Recent advances of slippery liquid-infused porous surfaces with anti-corrosion. Chemical Communications, 59(16), 2182-2198.
  63. [63]Scarratt, L. R., Zhu, L., & Neto, C. (2019). How slippery are slips? Measuring effective slip on lubricated surfaces with colloidal probe atmoc force microscopy. Langmuir, 35(8), 2976-2982.
  64. [64]Sakuraba, K., Kitano, S., Kowalski, D., Aoki, Y., & Habazaki, H. (2021). Slippery liquid-infused porous surfaces on aluminum for corrosion protection with improved self-healing ability. ACS applied materials & interfaces, 13(37), 45089-45096.
  65. [65]Tesler, A. B., Prado, L. H., Thievessen, I., Mazare, A., Schmuki, P., Virtanen, S., & Goldmann, W. H. (2022). Nontoxic liquid-infused slippery coating prepared on steel substrates inhibits corrosion and biofouling adhesion. ACS Applied Materials & Interfaces, 14(25), 29386-29397.
  66. [66]Yue, D., Jiang, X., Yu, H., & Sun, D. (2023). In-situ fabricated hierarchical nanostructure on titanium alloy as highly stable and durable super-lubricated surface for anti-biofouling in marine engineering. Chemical Engineering Journal, 463, 142389.
  67. [67]Li, H., Peng, Y., Zhang, K., Li, P., Xin, L., Yin, X., & Yu, S. (2022). Spontaneous self-healing bio-inspired lubricant-infused coating on pipeline steel substrate with reinforcing anti-corrosion, anti-fouling, and anti-scaling properties. Journal of Bionic Engineering, 19(6), 1601-1614.
  68. [68]Sotiri, I., Tajik, A., Lai, Y., Zhang, C. T., Kovalenko, Y., Nemr, C. R., ... & Howell, C. (2018). Tunability of liquid-infused silicone materials for biointerfaces. Biointerphases, 13(6).
  69. [69]Liu, Q., Yang, Y., Huang, M., Zhou, Y., Liu, Y., & Liang, X. (2015). Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating. Applied Surface Science, 346, 68-76.
  70. [70]Ware, C. S., Smith-Palmer, T., Peppou-Chapman, S., Scarratt, L. R., Humphries, E. M., Balzer, D., & Neto, C. (2018). Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS applied materials & interfaces, 10(4), 4173-4182.
  71. [71]Zhang, B., Xu, W., Zhu, Q., Guan, F., & Zhang, Y. (2022). Nepenthes pitcher-inspired lubricant-infused slippery surface with superior anti-corrosion durability, hot water repellency and scratch resistance. Journal of Industrial and Engineering Chemistry, 107, 259-267.
  72. [72]Lin, D., Wang, X., Zhang, M., Yuan, S., Xu, F., Bao, D., & Wang, H. (2022). A robust and eco-friendly waterborne anti-corrosion composite coating with multiple synergistic corrosion protections. Composites Part B: Engineering, 232, 109624.
  73. [73]Yan, W., Xue, S., Zhao, X., Zhang, W., & Li, J. (2024). Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 35(4), 109224.
  74. Li, B. (2025). GIS-Integrated Semi-Supervised U-Net for Automated Spatiotemporal Detection and Visualization of Land Encroachment in Protected Areas Using Remote Sensing Imagery.
  75. Zhang, T. (2025). A Neuro-Symbolic and Blockchain-Enhanced Multi-Agent Framework for Fair and Consistent Cross-Regulatory Audit Intelligence.
  76. Gu, Y., & Lukin, S. (2025). Employment Effects of Digital Economy: The Role of SMEs in Bridging Skill Mismatch. International Journal of Multidisciplinary Research, 1(2), 112-118.
  77. Guo, X., & Gu, Y. (2025). Research On The Complementarity Between Economic Activities And Teaching Activities In Educational Institutions. International Journal of Multidisciplinary Research, 1(2), 56-62.