Research Article
Vol. 1 No. 3 (2025): International Journal of Multidisciplinary Research
Concrete Anti-Fouling Coatings: Progress from Barrier Layers to Liquid-Infused Slippery Surfaces
Qingdao University of Technology
Abstract
Concrete surfaces in marine, hydraulic, and urban environments are prone to physical, chemical, and biological fouling, accelerating degradation and reinforcement corrosion. Surface coatings offer protection, including barrier-type, superhydrophilic hydration-layer, antimicrobial, superhydrophobic, and liquid-infused slippery coatings. Barrier coatings provide physical isolation but suffer from limited durability; superhydrophilic and antimicrobial coatings improve self-cleaning and bio-resistance yet face mechanical and chemical stability challenges. Superhydrophobic coatings reduce contaminant adhesion via micro-/nano-structures, but air-trapped interfaces are easily disrupted. Liquid-infused slippery coatings stabilize a lubricating layer within porous structures, achieving low friction, anti-fouling, low adhesion, and self-healing properties. This review summarizes fouling mechanisms, evaluates coating strategies, and highlights ultraslippery coatings as a promising approach for durable, environmentally friendly concrete protection in harsh conditions.
References
- [1]Liu, M., & Zhang, L. (2020). Research on concrete durability and protection technology in marine environment. Journal of Coastal Research, 109(SI), 206-209.
- [2]Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 1(11), 559-573.
- [3]Chen, X., Yu, C., Wang, L., & Yu, B. (2024). A comprehensive review of the bio-corrosion mechanisms, hydrodynamics and antifouling measures on marine concrete. Ocean Engineering, 310, 118696.
- [4]Wang, D., Guan, F., Feng, C., Mathivanan, K., Zhang, R., & Sand, W. (2023). Review on microbially influenced concrete corrosion. Microorganisms, 11(8), 2076.
- [5]Liu, Q., Liao, Z., Xiong, Y., Liu, Z., & Zhang, W. (2023). Effect of imitation fair-faced curing and protective coating on the durability of concrete. Journal of Building Engineering, 63, 105540.
- [6]Woyciechowski, P., Łukowski, P., Szmigiera, E., Adamczewski, G., Chilmon, K., & Spodzieja, S. (2021). Concrete corrosion in a wastewater treatment plant–A comprehensive case study. Construction and Building Materials, 303, 124388.
- [7]Lee, T., Kim, D., Cho, S., & Kim, M. O. (2025). Advancements in Surface Coatings and Inspection Technologies for Extending the Service Life of Concrete Structures in Marine Environments: A Critical Review. Buildings, 15(3), 304.
- [8]Zhang, H., Xing, H. F., & Li, H. M. (2022). Mechanical characteristic and microstructure of salt-rich cement soil. Bulletin of Engineering Geology and the Environment, 81(3), 92.
- [9]Wang, R., Feng, X., Chen, Y., Bian, S., & Qian, C. (2024). Superhydrophobic coating in cement mortar via inherent microstructure for enhanced efflorescence resistance. Journal of Building Engineering, 98, 111364.
- [10]Luo, Y., Gao, X., Wang, D., Liu, Y., Zhang, Q., Li, J., ... & Xue, G. (2024). Study on the efflorescence behavior of concrete by adding metakaolin. Journal of Building Engineering, 83, 108396.
- [11]Liang, T., Zhou, J., & Wu, Q. (2023). Experimental investigation on leaching behavior of ultra-high performance concrete submitted to a flow environment. Construction and Building Materials, 372, 130843.
- [12]Kou, C., Qi, Y., Kang, A., Hu, H., & Wu, X. (2021). Spatiotemporal distribution characteristics of runoff-pollutants from three types of urban pavements. Journal of Cleaner Production, 292, 125885.
- [13]Svintsov, A. P., Nikolenko, Y. V., & Fediuk, R. S. (2022). Aggressive effect of vegetable oils and organic fatty acids on cement-sand mortar and concrete. Construction and Building Materials, 329, 127037.
- [14]Omar, M. H., Almeshal, I., Tayeh, B. A., & Bakar, B. A. (2022). Studying the properties of epoxy polymer concrete reinforced with steel and glass fibers subjected to cycles of petroleum products. Case Studies in Construction Materials, 17, e01668.
- [15]Diab, H. (2012). Compressive strength performance of low-and high-strength concrete soaked in mineral oil. Construction and Building Materials, 33, 25-31.
- [16]García-Florentino, C., Maguregui, M., Carrero, J. A., Morillas, H., Arana, G., & Madariaga, J. M. (2020). Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. Journal of cleaner production, 268, 122134.
- [17]Ozga, I., Bonazza, A., Bernardi, E., Tittarelli, F., Favoni, O., Ghedini, N., ... & Sabbioni, C. (2011). Diagnosis of surface damage induced by air pollution on 20th-century concrete buildings. Atmospheric Environment, 45(28), 4986-4995.
- [18]Fernandez, V. R., de la Villa Mencía, R. V., Rojas, M. F., Giménez, R. G., Moreno-Juez, J., & de Soto García, I. S. (2024). Construction and demolition waste in cement matrices as sinkholes of atmospheric pollution: Effect of the 2022 airborne dust in the Iberian Peninsula. Journal of Hazardous Materials, 464, 132929.
- [19]Tabatabaei, J. (2019). The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures. Advances in concrete construction, 7(2), 127.
- [20]Li, Y., & Ning, C. (2019). Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioactive materials, 4, 189-195.
- [21]Zarzuela, R., Cervera, J. J., Moreno, I., Gil, M. A., & Mosquera, M. J. (2023). Exploring the low cell adhesion of photoinduced superhydrophilic surfaces for improving the effect of antifouling protective coatings on porous building materials. Construction and Building Materials, 400, 132573.
- [22]Rong, H., Bao, Q., Huang, J., Song, Z., Liu, X., Huang, K., ... & Liu, Z. (2025). A Review on Algal Corrosion of Marine Concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 40(4), 1057-1066.
- [23]Liu, M., Li, S., Wang, H., Jiang, R., & Zhou, X. (2021). Research progress of environmentally friendly marine antifouling coatings. Polymer Chemistry, 12(26), 3702-3720.
- [24]Manso, S., Calvo-Torras, M. Á., De Belie, N., Segura, I., & Aguado, A. (2015). Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions. Science of The Total Environment, 512, 444-453.
- [25]Zhou, A., Sand, W., Wang, X., Geng, Y., Ban, X., Jin, Z., & Zhang, R. (2025). Self-growing composite photocatalytic materials for surface self-renewal of marine antifouling coatings. Separation and Purification Technology, 354, 129387.
- [26]Hughes, P., Fairhurst, D., Sherrington, I., Renevier, N., Morton, L. H. G., Robery, P. C., & Cunningham, L. (2013). Microscopic study into biodeterioration of marine concrete. International Biodeterioration & Biodegradation, 79, 14-19.
- [27]Zhang, M., Xu, H., Zeze, A. L. P., Liu, X., & Tao, M. (2022). Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection. Cement and Concrete Composites, 129, 104495.
- [28]Elnaggar, E. M., Elsokkary, T. M., Shohide, M. A., El-Sabbagh, B. A., & Abdel-Gawwad, H. A. (2019). Surface protection of concrete by new protective coating. Construction and Building Materials, 220, 245-252.
- [29]Somarathna, H. M. C. C., Raman, S. N., Mohotti, D., Mutalib, A. A., & Badri, K. H. (2021). Behaviour of concrete specimens retrofitted with bio-based polyurethane coatings under dynamic loads. Construction and Building Materials, 270, 121860.
- [30]Huang, H., Fang, S., Luo, S., Hu, J., Yin, S., Wei, J., & Yu, Q. (2021). Multiscale modification on acrylic resin coating for concrete with silicon/fluorine and graphene oxide (GO) nanosheets. Construction and Building Materials, 305, 124297.29. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion
- [31]Li, G., Hu, W., Cui, H., & Zhou, J. (2019). Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings. Construction and Building Materials, 201, 623-630.
- [32]Zhang, H., Wang, F., & Guo, Z. (2024). The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Advances in Colloid and Interface Science, 325, 103097.
- [33]Zhu, Z., Gao, Q., Long, Z., Huo, Q., Ge, Y., Vianney, N., ... & Wang, B. (2021). Polydopamine/poly (sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial activity. Bioactive materials, 6(8), 2546-2556.
- [34]Chen, X., Geng, Y., Li, S., Hou, D., Meng, S., Gao, Y., ... & Ai, H. (2021). Preparation of modified silane composite emulsion and its effect on surface properties of cement-based materials. Coatings, 11(3), 272.
- [35]Carrascosa, L. A., Zarzuela, R., Badreldin, N., & Mosquera, M. J. (2020). A simple, long-lasting treatment for concrete by combining hydrophobic performance with a photoinduced superhydrophilic surface for easy removal of oil pollutants. ACS applied materials & interfaces, 12(17), 19974-19987.
- [36]Maryudi, M., Rahayu, A., & Hakika, D. C. (2023). Effectiveness of polyethylene glycol-coated silica on ions adsorption in industrial wastewater. Polimery, 68(5), 259-263.
- [37]Zhang, F., Zhao, X., Dong, C., Zhang, H., Wang, C., Wang, H., & Liu, F. Bioinspired Self-Healing Superhydrophilic Coatings for Extreme Underwater Environments. Available at SSRN 5262481.
- [38]Wang, D., Guan, F., Feng, C., Mathivanan, K., Zhang, R., & Sand, W. (2023). Review on microbially influenced concrete corrosion. Microorganisms, 11(8), 2076.
- [39]Li, Y., & Ning, C. (2019). Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioactive materials, 4, 189-195.
- [40]Ubaldi, F., Valeriani, F., Volpini, V., Lofrano, G., & Romano Spica, V. (2024). Antimicrobial activity of photocatalytic coatings on surfaces: A systematic review and meta-analysis. Coatings, 14(1), 92.
- [41]Abdelghafar, A., Yousef, N., & Askoura, M. (2022). Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC microbiology, 22(1), 244.
- [42]Fontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods, 9(4), 442.
- [43]Vilas-Boas, C., Silva, E. R., Resende, D., Pereira, B., Sousa, G., Pinto, M., ... & Sousa, E. (2023). 3, 4-Dioxygenated xanthones as antifouling additives for marine coatings: In silico studies, seawater solubility, degradability, leaching, and antifouling performance. Environmental Science and Pollution Research, 30(26), 68987-68997.
- [44]Riyazuddin, Bano, S., Husain, F. M., Siddique, J. A., Alharbi, K. H., Khan, R. A., & Alsalme, A. (2020). Role of copper oxide on epoxy coatings with new intumescent polymer-based fire retardant. Molecules, 25(24), 5978.
- [45]Channa, N., Gadhi, T. A., Freyria, F. S., Chiadò, A., Blangetti, N., Ditaranto, N., & Bonelli, B. (2025). Photocatalytic Disinfection of Selected Waterborne Pathogens by Visible Light-Active Nano Iron-Doped TiO2 Obtained by a Sol–Gel Method. ACS Applied Nano Materials, 8(19), 10066-10079.
- [46]Castro-Hoyos, A. M., Rojas Manzano, M. A., & Maury-Ramírez, A. (2022). Challenges and opportunities of using titanium dioxide photocatalysis on cement-based materials. Coatings, 12(7), 968.
- [47]Hamdany, A. H., Ding, Y., & Qian, S. (2023). Graphene-based TiO2 cement composites to enhance the antibacterial effect of self-disinfecting surfaces. Catalysts, 13(9), 1313.
- [48]Bento de Carvalho, T., Barbosa, J. B., & Teixeira, P. (2023). Effectiveness and durability of a quaternary ammonium compounds-based surface coating to reduce surface contamination. Biology, 12(5), 669.
- [49]Marzullo, P., Gruttadauria, M., & D’Anna, F. (2024). Quaternary ammonium salts-based materials: A review on environmental toxicity, anti-fouling mechanisms and applications in marine and water treatment industries. Biomolecules, 14(8), 957.
- [50]Li, S., Liu, X., Xing, C., Tan, Y., Xiao, A., Wei, Y., ... & Dai, M. (2025). Preparation of superhydrophobic photothermal coatings via sequentially grown mesoporous silica-coated CNTs for anti-icing applications on cement concrete. Journal of Building Engineering, 105, 112449.
- [51]Tian, H., Zhan, Y., Tian, L., & Sun, J. (2023). Corrosion resistance self-healing coating with bioinspired interfacial structure. Progress in Organic Coatings, 174, 107303.
- [52]Gu, Z., Zhao, M., Liu, Q., Mao, C., Zhang, L., Sun, X., & Lv, S. (2024). Photothermal superhydrophobic coating for concrete: Highly effective anti/deicing performance and corrosion resistance. Materials Today Communications, 41, 110623.
- [53]Yang, F., Zhou, W., Li, F., Yuan, L., Diao, Y., Liu, Y., ... & Wang, D. (2022). Sprayable coating based on fluorinated silica nanocomposites with superhydrophobic and antibacterial properties for advanced concrete. Progress in Natural Science: Materials International, 32(4), 472-481.
- [54]Song, J., Li, Y., Xu, W., Liu, H., & Lu, Y. (2019). Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of colloid and interface science, 541, 86-92.
- [55]Gu, W., Li, W., Zhang, Y., Xia, Y., Wang, Q., Wang, W., ... & Zhang, Y. (2023). Ultra-durable superhydrophobic cellular coatings. Nature communications, 14(1), 5953.
- [56]Wu, Y. L., She, W., Shi, D., Jiang, T., Hao, T. H., Liu, J., ... & Li, R. Y. (2020). An extremely chemical and mechanically durable siloxane bearing copolymer coating with self-crosslinkable and anti-icing properties. Composites Part B: Engineering, 195, 108031.
- [57]Kong, X., Shen, Y., Shi, J., Zhang, N., Kang, R., & Fu, Y. (2024). Superhydrophobic concrete coating with excellent mechanical robustness and anti-corrosion performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 684, 133157.
- [58]Pang, B., Jin, Z., Zhang, Y., Liu, Z., She, W., Wang, P., ... & Gao, S. (2022). Ultraductile cementitious structural health monitoring coating: waterborne polymer biomimetic muscle and polyhedral oligomeric silsesquioxane‐assisted C‐S‐H dispersion. Advanced Functional Materials, 32(51), 2208676.
- [59]Jin, H., Tian, L., Bing, W., Zhao, J., & Ren, L. (2022). Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 124, 100889.
- [60]Selim, M. S., Shenashen, M. A., El-Safty, S. A., Higazy, S. A., Selim, M. M., Isago, H., & Elmarakbi, A. (2017). Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials Science, 87, 1-32.
- [61]Wong, T. S., Kang, S. H., Tang, S. K., Smythe, E. J., Hatton, B. D., Grinthal, A., & Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477(7365), 443-447.
- [62]Yan, W., Xue, S., Xiang, B., Zhao, X., Zhang, W., Mu, P., & Li, J. (2023). Recent advances of slippery liquid-infused porous surfaces with anti-corrosion. Chemical Communications, 59(16), 2182-2198.
- [63]Scarratt, L. R., Zhu, L., & Neto, C. (2019). How slippery are slips? Measuring effective slip on lubricated surfaces with colloidal probe atmoc force microscopy. Langmuir, 35(8), 2976-2982.
- [64]Sakuraba, K., Kitano, S., Kowalski, D., Aoki, Y., & Habazaki, H. (2021). Slippery liquid-infused porous surfaces on aluminum for corrosion protection with improved self-healing ability. ACS applied materials & interfaces, 13(37), 45089-45096.
- [65]Tesler, A. B., Prado, L. H., Thievessen, I., Mazare, A., Schmuki, P., Virtanen, S., & Goldmann, W. H. (2022). Nontoxic liquid-infused slippery coating prepared on steel substrates inhibits corrosion and biofouling adhesion. ACS Applied Materials & Interfaces, 14(25), 29386-29397.
- [66]Yue, D., Jiang, X., Yu, H., & Sun, D. (2023). In-situ fabricated hierarchical nanostructure on titanium alloy as highly stable and durable super-lubricated surface for anti-biofouling in marine engineering. Chemical Engineering Journal, 463, 142389.
- [67]Li, H., Peng, Y., Zhang, K., Li, P., Xin, L., Yin, X., & Yu, S. (2022). Spontaneous self-healing bio-inspired lubricant-infused coating on pipeline steel substrate with reinforcing anti-corrosion, anti-fouling, and anti-scaling properties. Journal of Bionic Engineering, 19(6), 1601-1614.
- [68]Sotiri, I., Tajik, A., Lai, Y., Zhang, C. T., Kovalenko, Y., Nemr, C. R., ... & Howell, C. (2018). Tunability of liquid-infused silicone materials for biointerfaces. Biointerphases, 13(6).
- [69]Liu, Q., Yang, Y., Huang, M., Zhou, Y., Liu, Y., & Liang, X. (2015). Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating. Applied Surface Science, 346, 68-76.
- [70]Ware, C. S., Smith-Palmer, T., Peppou-Chapman, S., Scarratt, L. R., Humphries, E. M., Balzer, D., & Neto, C. (2018). Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS applied materials & interfaces, 10(4), 4173-4182.
- [71]Zhang, B., Xu, W., Zhu, Q., Guan, F., & Zhang, Y. (2022). Nepenthes pitcher-inspired lubricant-infused slippery surface with superior anti-corrosion durability, hot water repellency and scratch resistance. Journal of Industrial and Engineering Chemistry, 107, 259-267.
- [72]Lin, D., Wang, X., Zhang, M., Yuan, S., Xu, F., Bao, D., & Wang, H. (2022). A robust and eco-friendly waterborne anti-corrosion composite coating with multiple synergistic corrosion protections. Composites Part B: Engineering, 232, 109624.
- [73]Yan, W., Xue, S., Zhao, X., Zhang, W., & Li, J. (2024). Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 35(4), 109224.
- Li, B. (2025). GIS-Integrated Semi-Supervised U-Net for Automated Spatiotemporal Detection and Visualization of Land Encroachment in Protected Areas Using Remote Sensing Imagery.
- Zhang, T. (2025). A Neuro-Symbolic and Blockchain-Enhanced Multi-Agent Framework for Fair and Consistent Cross-Regulatory Audit Intelligence.
- Gu, Y., & Lukin, S. (2025). Employment Effects of Digital Economy: The Role of SMEs in Bridging Skill Mismatch. International Journal of Multidisciplinary Research, 1(2), 112-118.
- Guo, X., & Gu, Y. (2025). Research On The Complementarity Between Economic Activities And Teaching Activities In Educational Institutions. International Journal of Multidisciplinary Research, 1(2), 56-62.